Брауэр Лёйтзен Эгберт Ян (Brauer, Leitzen Egbert Jan).

Родившиеся в январе
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Родившиеся в феврале
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29            

Родившиеся в марте
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Родившиеся в апреле
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          

Родившиеся в мае
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Родившиеся в июне
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          
 


 

Брауэр Лёйтзен Эгберт Ян.

 ›

Лёйтзен Эгберт Ян Брауэр
Luitzen Egbertus Jan Brouwer
Дата рождения:

27 февраля 1881

Место рождения:

Оверши

Дата смерти:

2 декабря 1966 (85 лет)

Место смерти:

Бларикюм

Страна:

 Нидерланды

Научная сфера:

топология, теория множеств, математическая логика, теория меры, комплексный анализ

Место работы:

Амстердамский университет

Альма-матер:

Амстердамский университет

Научный руководитель:

Дидерик Кортевег

Награды и премии


Теорема Брауэра


Лёйтзен Э́гберт Ян Бра́уэр (нидерл. Luitzen Egbertus Jan Brouwer; 27 февраля 1881 - 2 декабря 1966) - голландский философ и математик, выпускник университета Амстердама, работавший в таких областях математики, как топология, теория множеств, математическая логика, теория меры и комплексный анализ.

Член Нидерландской АН в Амстердаме (1912), член-корреспондент Королевской АН в Лондоне, Парижской и Гёттингенской АН, профессор Амстердамского университета (1912-1951). В 1932 г. он получил звание Рыцаря Голландского льва (Knight in the Order of the Dutch Lion).

Положил начало новому направлению в математике - интуиционизму. Он подверг сомнению неограниченную приложимость в математических рассуждениях классических законов исключённого третьего, (снятия) двойного отрицания, косвенного доказательства (доказательства от противного). Одним из результатов анализа таких рассуждений явилось возникновение интуиционистской логики, сформулированной в 1930 г. учеником Брауэра А. Гейтингом и не содержащей указанных законов.

Содержание
  • Биография
  • Память
  • См. также
  • Ссылки
Биография

Родился 27 февраля 1881 г. в Оверши (Overschie), сегодня это пригород Роттердама в Голландии. Друзья звали его по второму имени Бертус. Будучи очень способным, Брауэр в 14 лет закончил полную школу в Хоорне, городе на озере Зюйдерзее к северу от Амстердама. Он не изучал в школе греческого и латыни, однако оба языка были необходимы для поступления в университет, так что следующие два года Брауэр посвятил их изучению. В этот период времени его семья переезжает в Харлем, к западу от Амстердама. Здесь же в 1897 г. в гимназии он сдал вступительные экзамены в университет Амстердама.

Профессором математики в Амстердамском университете у Брауэра был Кортвег, который быстро понял, что в лице Брауэра он имеет выдающегося студента. Ещё в самом начале обучения Брауэр получил оригинальные результаты о непрерывных движениях в 4-х мерном пространстве, и Кортвег обескуражил его предложением о публикации. Статья вышла, и Брауэр получил первую публикацию в Королевской Академии наук в Амстердаме в 1904 (the Royal Academy of Science in Amsterdam). Кроме того, Брауэр интересовался топологией и основаниями математики. Он не только изучал эти разделы в университете, но и сам читал массу литературы по этим вопросам.

Брауэр закончил университет в 1904 г. и в том же году женился на Лизе де Холл (Lize de Holl), которая была на 11 лет старше его и имела дочь от первого брака. После заключения брака, который не принёс детей, Брауэр с женой и приёмной дочерью переехал в Бларикум, недалеко от Амстердама. Через три года Лиза получила квалификацию фармацевта, и Брауэр помог ей в организации книготорговой фирмы по снабжению книгами магазинов химических товаров. Между тем Брауэр не был в восторге от приёмной дочери, и отношения между ними были натянутыми.

С самого начала Брауэр интересовался философией математики, а также был очарован мистицизмом и другими философскими вопросами, относящимися к человеческому обществу. В 1905 году он опубликовал свои идеи в книге, которая имела заголовок «Жизнь, искусство и мистика» (Leven, Kunst, en Mystiek).

В 1909 г. он стал приват-доцентом Амстердамского университета. В своей инаугурационной речи 12 октября 1909 г. «О природе геометрии» он развернул свою исследовательскую программу. Несколько месяцев спустя он предпринял важную поездку в Париж в канун рождества 1909 г., где встретился с Пуанкаре, Адамаром и Борелем. Основываясь на дискуссиях в Париже, он начал работать над проблемой инвариантности пространственных измерений.

С 1904 года Брауэр последовательно проводил критику т. н. чистых математических доказательств существования, опирающихся на логический принцип исключённого третьего, что в конечном счёте положило начало целому направлению в обоснованиях математики математическому интуиционизму.

Однако независимую от философии интуиционизма ценность имеет проведённый Брауэром анализ математических доказательств существования с точки зрения конструктивного построения тех объектов, существование которых доказывается. В частности, А. Н. Колмогоровым было показано, что правила т. н. интуиционистской логики находят своё реальное осуществление в логике конструктивного решения математических проблем.

В 1911-1913 гг. Брауэр установил ряд важных понятий и результатов в области топологии. В их числе: понятия симплициальной аппроксимации и степени непрерывного отображения; понятие гомотопической классификации отображений; теорема о гомотопической эквивалентности двух отображений (сферы на себя), имеющих одну и ту же степень; теорема об инвариантности числа измерений и инвариантности внутренних точек (при топологическом отображении множества, лежащего в n-мерном пространстве, в это же пространство); теорема о неподвижной точке; n-мернная теорема Жордана и другие. Эти результаты и методы, найденные для их доказательства, определили значительное влияние Брауэра на развитие топологии в период между 1-й и 2-й мировыми войнами.

Теорема Брауэра о неподвижной точке: Любое непрерывное отображение n-мерного шара в себя имеет неподвижную точку.

Брауэр был выбран в 1912 в Королевскую Академию наук в Амстердаме. В 1919 г. Давид Гильберт попытался соблазнить его местом в Геттингене, в том же году ему предлагали место в Берлине. Несмотря на заманчивость этих предложений, Брауэр отказался. (Возможно этот выбор в пользу Амстердама в определённой степени объяснялся влиянием Ван дер Вардена, который учился в Амстердамском университете в 1919-1923 гг. и был слушателем Брауэра.)

Несмотря на то, что ему не удалось повернуть математиков на свой путь мышления, Брауэр был широко признан в мире за свой выдающийся вклад. Он был выбран в 1912 в Королевскую Академию наук в Амстердаме, являлся действительным членом Королевской Академии наук в Лондоне, Академии наук в Геттингене, Парижской АН, получил степень почётного доктора в Университете Осло в 1929 г. и Кембриджского университета в 1954 г. В 1932 г. он получил звание Рыцаря Голландского льва (Knight in the Order of the Dutch Lion).

Умер в 1966 г. в Бларикюме в результате автокатастрофы.

В его честь учреждена международная медаль Нидерландского математического общества, присуждаемая раз в три года.

Память

В 1970 г. Международный астрономический союз присвоил имя Лёйтзена Эгберта Яна Брауэра (совместно с Дирком Брауэром) кратеру на обратной стороне Луны.

См. также
  • Интуиционизм
  • Теорема Брауэра о неподвижной точке

Доп. информация

 

 








Родившиеся в июле
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Родившиеся в августе
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Родившиеся в сентябре
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          

Родившиеся в октябре
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Родившиеся в ноябре
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          

Родившиеся в декабре
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

© 2015 famous-birthdays.ru
При использовании материалов сайта прямая, активная ссылка на источник обязательна!
Дата последнего обновления каталога именинников: 2018-11-21